ASTM C138

Standard Test Method for Density (Unit Weight), Yield and Air Content (Gravimetric) of Concrete

Understanding ASTM International Test Procedures for Cement and Concrete - Staying Up to Standard

Anthony F. Bentivegna, Ph.D. April 27-28, 2015

Acknowledgments

Slides Adapted from ASTM International

Outline

- Scope
- Define Key Terminology
- Identify Necessary Equipment
- Procedure
- Understand Limitations of Procedure
- Calculations
- Report

Related Procedures

- ASTM C29 Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate
- ASTM C31 Practice for Making and Curing Concrete Test Specimens in the Field
- ASTM C143 Test Method for Slump of Hydraulic-Cement Concrete
- ASTM C150 Specification for Portland Cement
- ASTM C172 Practice for Sampling Freshly Mixed Concrete
- ASTM C173 Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
- ASTM C188 Test Method for Density of Hydraulic Cement
- ASTM C231 Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

Scope

 This test method addresses the procedures for determining the <u>density</u> and calculating the <u>yield</u>, <u>cement content</u>, and <u>air content</u> of fresh concrete.

Terminology

- Density: mass per unit volume of concrete, kg/m³
- Yield: volume of concrete produced for a batch, m³
- Gravimetric Air Content: air content computed as a percentage of the volume of concrete and determined on the basis of a theoretical and measured density, %

CTLGROUP

Terminology

- Theoretical Density: density of the concrete computed on an air free basis, kg/m³.
 - density computed based on the mass and volume of the liquids and solids only
 - volume occupied by air (both entrapped and entrained) is taken as zero

• T = M / V

- $M = \Sigma M = \Sigma$ [all masses]
- $V = \Sigma V = \Sigma$ [Mass / (1000*Specific Gravity)]

CTLGROUF

Apparatus

- Balance (scale)
- Tamping rod
- Internal Vibrator
- Measure
- Strike-off Plate
- Mallet
- Scoop

w.CTLGroup.com

Apparatus: Balance

- Accurate, at any point in the range of use, to the greater of,
 - 45 g or
 - · 0.3% of the load in the range of use
- "Range of use" extends from the mass of the measure when empty to the mass of the measure filled with material having a density of 2600 kg/m³.

Apparatus: Tamping Rod

- ▶ Round, smooth, straight, steel.
- 16 mm diameter.
- Tamping end, or both ends, shall be rounded to a hemispherical tip.
- The length shall be at least 100 mm greater than the depth of the measure, but not greater than 600 mm.

 a length of 400 to 600 mm meets these requirements

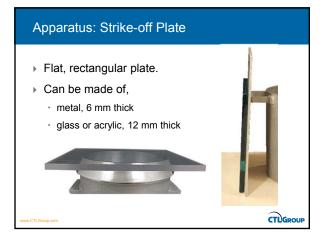
Apparatus: Internal Vibrator

- Rigid or flexible shaft.
- Preferably powered by an electric motor.
- Frequency \geq 7000 vibrations/min.
- ▶ 19 mm ≤ diameter, or side dimension ≥ 38 mm

Apparatus: Measure

- Cylindrical container.
- Minimum capacity based on the Nominal Maximum Size (NMS) of the coarse aggregate per Table 1.
- Shall conform to the requirements of ASTM C29.

Apparatu	ıs: Table 1		
	NMS of Coarse Aggregate (mm)	Capacity of Measure (L)	
	25.0	6	
	37.5	11	
	50	14	
	75	28	
	112	70	
	150	100	
www.CTLGroup.com			



Apparatus: Measure

> When an air meter bowl is used as the measure,

- the bowl shall conform to the requirements of ASTM C231
- the bowl shall be calibrated for volume per ASTM C29
- the top rim shall be smooth and plane within 0.3 mm.

Apparatus: Strike-off Plate

- Length and width should be at least 50 mm greater than the diameter of the measure.
- Edges shall be straight and smooth within 2 mm.

Apparatus: Mallet

- Shall have a rubber or rawhide head.
- Required mass of head depends on the capacity of the measure.
 - * 600 ± 200 g, for measures \leq 14 L
 - 1000 ± 200 g, for measures > 14 L

Apparatus: Scoop

- Shall have a size,
 - large enough so the material taken from the sampling receptacle is representative
 - small enough so concrete is not spilled during placement of material in the mold

Procedure: Note

To compute density, it is necessary to determine the mass and volume of the empty measure.

follow the procedures in Section 8 of ASTM C 29 to determine the volume of any measure

Procedure: Sample

 Obtain a representative sample of concrete according to ASTM Practice C172.

Procedure

 Unless otherwise specified, determine the method of consolidation based on the measured slump.

	Measured Slump	Method of Consolidation	_
	Slump < 25 mm	Vibrate	
	25 mm < Slump < 75 mm	Rod or Vibrate	
	Slump ≥ 75 mm	Rod	
www.CTLGroup.com			

Procedure

- Dampen the interior of the measure. Place measure on a flat, level, and firm surface.
- Use a scoop to place concrete in the measure.
- Move the scoop around the measure opening so material is evenly distributed and segregation is minimized.

Procedure: Rodding

- Fill the measure in three layers of approximately equal volume.
- Consolidate the concrete using the rounded end of the tamping rod.
 - uniformly distribute the rodding strokes over the cross section of the measure
 - · rod the bottom layer through its depth
 - rod each upper layer through its depth and into the layer below approximately 25 mm.

Procedure: Rodding

Number of rodding strokes per layer is a function of the size of the measure.

	Volume of Measure	Number of Strokes per Layer
	Volume ≤ 14 L	25
	Volume = 28 L	50
	Volume > 28 L	1 per each 20 cm ² of surface area
ww.CTLGroup.com		

Procedure: Rodding

- After rodding a layer, tap the outside of the measure 10 to 15 times with a mallet.
 - This closes voids left by the rod and releases large air bubbles
- Avoid overfilling the measure when adding the final layer of concrete.

Procedure: Vibration

- Fill the measure in two approximately equal layers.
- Add all material for a layer before vibrating the layer.
- With each layer, insert the vibrator at three different points.
- For the final layer, the vibrator shall penetrate the layer below approximately 25 mm.

Procedure: Vibration

- > Do not allow the vibrator to touch the measure.
- Withdraw the vibrator so that no air pockets are left in the concrete.
- Continue vibrating until proper consolidation is achieved.
 - duration will depend on the characteristics of the concrete and vibrator
 - · duration should be consistent for all insertions

Procedure: Notes 8 and 9

- Sufficient vibration has occurred when the top surface of the concrete is relatively smooth.
- Over-vibration may cause segregation and loss of intentionally entrained air.

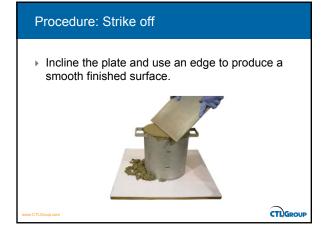
Procedure

- Following the consolidation process,
 - there should not be a substantial excess or deficiency of concrete in the measure
 - the optimum is approximately 3 mm of material above the rim of the measure
- If necessary,
 - a small amount of material may be added to correct a deficiency
 - representative material can be removed with a trowel or scoop

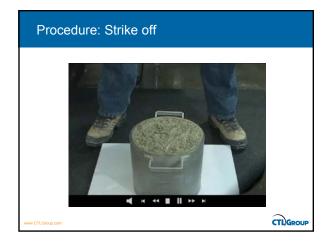
CTLGROUP

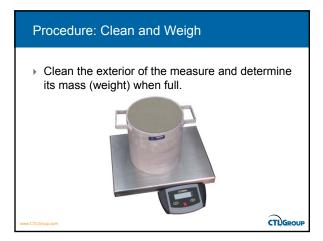
Procedure: Strike off

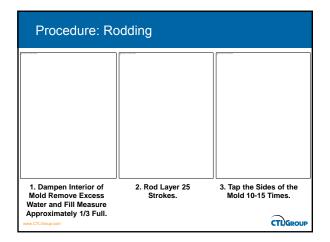
- Strike off the top surface using a flat strike-off plate.
 - produce a smooth finish to the top surface
- Strike off should result in a measure that is just level full.

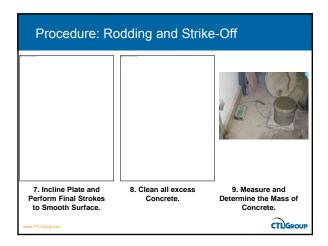

Procedure: Strike off

- While pressing down,
 - cover 2/3 of the concrete surface
 - · push down and pull back with a sawing motion
 - keep plate level and in contact with the measure at all times




Procedure: Strike off


- While pressing down,
 - · cover the same 2/3 of the concrete surface
 - push down and advance the plate forward with a sawing motion
 - move the plate across the entire surface until its back edge slides completely off the measure
 - keep the plate level and in contact with the measure at all times


Procedure: Rodding and Strike-Off

4. Place Two More Layers and Repeat Rodding and Tapping Procedures. 5. Measure must not Contain Substantial Excess or Deficiency of Concrete 0

6. Strike-Off by Covering 2/3 and Sawing off the Surface. Then 2/3 Pushing Away.

Calculation

Density (unit weight), kg/m³

Yield, m³

Calculation

Relative Yield

=

Actual Yield Design (Intended) Yield

- Ratio of Actual Concrete Obtained to Volume as Designed
 - Value greater than 1.00 indicates excessive concrete being produced.
 - Value less than 1.00 indicates short designed volume

Calculation

Air Content, %

```
=\left(\frac{\text{TheoreticalDensity} - \text{Measured Density}}{\text{TheoreticalDensity}}\right)x100 %
```

Terminology

- Theoretical Density: density of the concrete computed on an air free basis, kg/m³.
 - density computed based on the mass and volume of the liquids and solids only
 - volume occupied by air (both entrapped and entrained) is taken as zero

• T = M / V

- $M = \Sigma M = \Sigma$ [all masses]
- $V = \Sigma V = \Sigma$ [Mass / (1000*Specific Gravity)]

Report

- Identification of concrete and date of test.
- Report the test results as follows.
 - volume of measure to the nearest 0.01 L
 - density to the nearest 1.0 kg/m³
- When requested, report
 - yield to the nearest 0.1 m³
 - relative yield to the nearest 0.01
 - · cement content to the nearest 0.5 kg

 $\,\cdot\,$ air content to the nearest 0.1 $\%\,$

Limitations and Errors

- Determine the volume of the measure at least once a year.
- Tap the sides of the measure with a rubber mallet to close any voids. Voids cause the unit weight to be lower than the true value.
- In the filing of the container, add concrete and not mortar to ensure proportions remain the same.
- Use a flat plate to strike off the concrete. Tamping rod, trowel, float, or straight-edge will leave high spots.
- Wipe off the outside of the measure after filling.

CTLGROUP

